6 research outputs found

    Analysis of Wireless Body-Centric Medical Sensors for Remote Healthcare

    Get PDF
    Aquesta tesi aborda el problema de trobar solucions confortables, de baixa potència i sense fils per aplicacions mèdiques. La tesi tracta els avantatges i les limitacions de tres tecnologies de comunicació diferents per la mesura de paràmetres del cos i mètodes per redissenyar sensors per avaluacions òptimes centrades en el cos. La tecnologia RFID es considera una de les solucions més influents per superar el problema del consum d'energia limitat, a causa de la presència de molts sensors connectats. També s'ha estudiat la tecnologia Bluetooth de baixa energia per resoldre els problemes de seguretat i la distància de lectura que, en general, representen el coll d'ampolla de RFID pels sensors de cos. Els dispositius analògics poden reduir dràsticament les necessitats d'energia a causa dels sensors i les comunicacions, considerant pocs elements i un mètode de transmissió simple. S'estudia un mètode de comunicació completament passiu, basat en FSS, que permet una distància de lectura raonable amb capacitats de detecció precises i confiables, que s'ha discutit en aquesta tesi. L'objectiu d'aquesta tesi és investigar múltiples tecnologies sense fils per dispositius portàtils per identificar solucions adequades per aplicacions particulars en el camp mèdic. El primer objectiu és demostrar la facilitat d'ús de les tecnologies econòmiques sense bateria com un indicador útil de paràmetres fisiopatològics mitjançant la investigació de les propietats de les etiquetes RFID. A més a més, s'ha abordat un aspecte més complex respecte a l'ús de petits components passius com sensors sense fils per trastorns del son. Per últim, un altre objectiu de la tesi és el desenvolupament d'un sistema completament autònom que utilitzi tecnologia BLE per obtenir propietats avançades mantenint baix tant el consum com el preuEsta tesis aborda el problema de encontrar soluciones confortables, inalámbricas y de baja potencia para aplicaciones médicas. La tesis discute las ventajas y limitaciones de tres tecnologías de comunicación diferentes para la medición en el cuerpo y los métodos para elegir y remodelar los sensores para evaluaciones óptimas centradas en el cuerpo. La tecnología RFID se considera una de las soluciones más influyentes para superar el consumo de energía limitado debido a la presencia de muchos sensores conectados. Además, la baja energía de Bluetooth se ha estudiado se ha estudiado la tecnologia Bluetooth de baja energia para resolver los problemas de seguridad y la distancia de lectura que, en general, representan el cuello de botella de la RFID para los sensores de cuerpo. Los dispositivos analógicos pueden reducir drásticamente las necesidades de energía debido a los sensores y las comunicaciones, considerando pocos elementos y un método de transmisión simple. Se estudia un método de comunicación completamente pasivo, basado en FSS, que permite una distancia de lectura razonable con capacidades de detección precisas y confiables, que se ha discutido en esta tesis. El objetivo de esta tesis es investigar múltiples tecnologías inalámbricas para dispositivos portátiles para identificar soluciones adecuadas para aplicaciones particulares en campos médicos. El primer objetivo es demostrar la facilidad de uso de las tecnologías económicas sin batería como un indicador útil de dichos parámetros fisiopatológicos mediante la investigación de las propiedades de las etiquetas RFID. Además, se ha abordado un aspecto más complejo con respecto al uso de pequeños componentes pasivos como sensores inalámbricos para enfermedades del sueño. Por último, un resultado de la tesis es desarrollar un sistema completamente autónomo que utilice la tecnología BLE para obtener propiedades avanzadas que mantengan la baja potencia y un precio bajo.This thesis addresses the problem of comfortable, low powered and, wireless solutions for specific body-worn sensing. The thesis discusses advantages and limitations of three different communication technologies for on body measurement and investigate methods to reshape sensors for optimum body-centric assessments. The RFID technology is considered one of the most influential solutions to overcome the limitated power consumption due to the presence of many sensors connected. Further, the Bluetooth low energy has been studied to solve security problems and reading distance that overall represent the bottleneck of the RFID for the body-worn sensors. Analog devices can drastically reduce the energy needs due to the sensors and the communications, considering few elements and a simple transmitting method. An entirely passive communication method, based on FSS is studied, enabling a reasonable reading distance with precise and reliable sensing capabilities, which has been discussed in this thesis. The objective of this thesis is to investigate multiple wireless technologies for wearable devices to identify suitable solutions for particular applications in medical fields. The first objective is to demonstrate the usability of the inexpensive battery-less technologies as a useful indicator of such a physio-pathological parameters by investigating the properties of the RFID tags. Furthermore, a more complex aspect regards the use of small passive components as wireless sensors for sleep diseases has been addressed. Lastly, an outcome of the thesis is to develop an entirely autonomous system using the BLE technology to obtain advanced properties keeping low power and a low price

    A wireless indoor navigation aid for visually impaired people using UWB localization infrastructure and an original wayfinding algorithm

    No full text
    This is the description of a work in progress for the development of a wireless indoor wayfinding system to aid visual impaired people navigating unknown environment with fixed and moving obstacles. Based on a commercial, state of the art Ultra Wideband (UWB) time of flight localization infrastructure, the system can find the best way for connecting a starting and a destination point in an indoor scenario while giving to the vision impaired people the hints to move on the surface avoiding obstacles. A typical example application of the system is for aiding visual impaired people navigate an unknown train station guiding him from descending the train to the bus stop (or taxi stop, or toilettes, or bar, or ticket counter, or other connecting trains, or the like). The present paper addresses the problem of identifying free paths to navigate into an area full of obstacles. This is the typical situation encountered in robotic guidance or blind people navigation assistance in complex indoor environments. Taking apart the problems of localization and tracking, here we are only concerned about the identification of the optimal path to be followed, given a preexistent binary map of obstacles, to connect the start and destination points in a given area. Notwithstanding the various algorithms proposed so far, there is still a need for a very fast, robust, scalable and precise technique to be used in real time for the purpose. The implementation described in the following is made of a series of steps for obtaining the exact path from the preliminary knowledge of the obstacles (recorded as a simple binary map of the floor, clear, walkable, area) and the two positions of start and destination. The binary image of the floor is preliminarily treated with a thinning algorithm for obtaining all the possible paths on the area. The chosen thinning algorithm is the SafePoint Thinning Algorithm (SPTA), which was custom modified for imposing passing by the start and destination points. Afterwards, the resulting path binary map is heuristically treated for identifying the nodes and connecting arcs and eliminating all the dead-ending branches while saving only the start and destination branches. The resulting graph is then used to feed the Dijkstra algorithm for finding the shortest path between the start and destination nodes. The result is the optimized path to follow for connecting two places in an unfamiliar environment. In the absence of standard environments able to objectively test the different algorithms, we tested our algorithm with various simulated situations of growing complexity to explore the performances in various cases. The algorithm was implemented in Visual BASIC and proved fast enough for real time use provided the entity to assist in navigation has a normal human speed of movement. We plan to use this algorithm in the implementation of a commercial navigation assistance system for blind people where localization and tracking will be provided by an UWB real time location system

    Performance of Epidermal RFID Dual-loop Tag and On-Skin Retuning

    No full text

    Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring

    No full text

    The Myokinetic Control Interface: How Many Magnets Can be Implanted in an Amputated Forearm? Evidence From a Simulated Environment

    Get PDF
    We recently introduced the concept of a new human-machine interface (the myokinetic control interface) to control hand prostheses. The interface tracks muscle contractions via permanent magnets implanted in the muscles and magnetic field sensors hosted in the prosthetic socket. Previously we showed the feasibility of localizing several magnets in non-realistic workspaces. Here, aided by a 3D CAD model of the forearm, we computed the localization accuracy simulated for three different below-elbow amputation levels, following general guidelines identified in early work. To this aim we first identified the number of magnets that could fit and be tracked in a proximal (T1), middle (T2) and distal (T3) representative amputation, starting from 18, 20 and 23 eligible muscles, respectively. Then we ran a localization algorithm to estimate the poses of the magnets based on the sensor readings. A sensor selection strategy (from an initial grid of 840 sensors) was also implemented to optimize the computational cost of the localization process. Results showed that the localizer was able to accurately track up to 11 (T1), 13 (T2) and 19 (T3) magnetic markers (MMs) with an array of 154, 205 and 260 sensors, respectively. Localization errors lower than 7% the trajectory travelled by the magnets during muscle contraction were always achieved. This work not only answers the question: "how many magnets could be implanted in a forearm and successfully tracked with a the myokinetic control approach?", but also provides interesting insights for a wide range of bioengineering applications exploiting magnetic tracking

    Management and outcome of patients with established coronary artery disease: The Euro Heart Survey on coronary revascularization

    No full text
    corecore